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Gunderson's Function in Fermat's Last Theorem 

By Daniel Shanks and H. C. Williams 

Abstract. We study Gunderson's function which gives a bound on the first case of Fermat's 
last theorem, assuming that the generalized Wieferich criterion is valid for the first n prime 
bases. We note two unexpected phenomena. 

1. Introduction. Wieferich's criterion states that if 

(1) p2 2P- - 

for the odd primep, then any solution of 

(2) xP + yp = ZP 
in integers must have p I xyz; i.e., the first case of Fermat's last theorem is true for 
the exponentp. As is known [1], the onlyp < 3 - 109 for which 

(3) p2 l12P-1 _ I 

are p = 1093 and p = 3511. Mirimanoff's criterion is the same as Wieferich's 
except that the base 2 in (1) is replaced by 3. For this base [1], one has 

(4) p213P-1-1 

only for p = 11 andp = 1,006,003 if p < 230. Consequently, the first case is true for 
allp < 3- 109. 

Apropos, we note the following in passing. The heuristic probability of (3) isp-1. 
Likewise for (4). Assuming that these are independent events, it follows that the 
heuristic probability 9 of a counterexample for the first case satisfies 

00 
9 

< , p-2< 41- 10. 
3 109 

We shall see that 9 is even smaller. 
Recently [2], the Lehmers extended the calculation of (3) to all p < 5 - 109, and 

they found no other solution. Thus, the bound on the first case is 5 - 109. They are 
continuing. Suppose one wanted to increase the bound to, say, 1011 or 1013 or 1015. 
Obviously, that would require enormous calculations if it were done this way. 

Now (1) generalizes to 

(5) p2 qip-1I 

and this is a valid criterion not only for q1 = 2 and q2 = 3, but also for q3 = 5, 

q4= 7, and all prime qi up to qlI = 31. It was said to be valid also for q12= 37, 

q13= 41, q14 = 43, but in Gunderson's thesis [3] he questions the validity of the 
proofs that had been given for these last three cases. We return to that presently. 
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Since (5) is, in any case, a valid criterion up to q11 = 31, the heuristic probability 
above now becomes 

00 

8< E p-II lo-98. 
5 109 

We replace this heuristic estimate by the following exact (but weaker) result of 
Gunderson [31- 

THEOREM N. If 

p2 i qfp- 1, 

for all prime qi from qI = 2 to qn, then p must satisfy the inequality 

(6) ~~~(2 n -2)! 4 [log(p/V2-)]n 
(6) fn(p) (n -I)! (n -I)! n! log ql, log q2 ..log qn P 

The proof is combinatorial and it uses known results in the analytic theory of 

primes. It does not use algebraic number theory. 
But if (5) is a valid criterion up to qn (that would require algebraic number 

theory), and if f (p) > p - 1, then the first case is true for all such p. 
For n = 11, q1 l = 31, we solve for fn(p) = p - 1 by computing [4] the limit of 

the iterative sequence: 

(7) P = f"(P) + 1 

We call this limit G(1 1) and find that 

(8) G(l 1) = 1,110,601,026.794. 

The first prime greater than G(1 1) is 

(9) P(I 1) = 1,110,601,027. 

With some further argument, Gunderson now concludes that the first case is true 

for all p < P(1 1), except that he rounds this down to 1.1 * 109. 
At this time (1948), this was the largest bound known, but in 1969 the bound 

became 3 - 109, as we indicated above. Suppose it can be shown that (5) is also 

valid for qI2 = 37. Then we have 

G(12) = 4,343,289,919.341 and P(12) = 4,343,289,943, 

which is still not up to the Lehmers' bound 5 - 109. If (5) is also valid for q13 = 41, 
we have 

G(13) = 16,018,986,861.269 and P(13) = 16,018,986,869. 

This is now beyond the Lehmers' bound, and 

G(14) = 57,441,749,341.414 

P(14) = 57,441,749,347 

is well beyond that bound. 
It is clear that one should validate the previous claims made for q12 = 37, 

qI3 = 41 and qI4 = 43, if one can. In part, this involves manipulation with large 
determinants, and so it should be put on a computer. But if that is done, why stop 
at q14 = 43? If one continues, one either 

(a) validates qI5 = 47, etc., and thereby obtains still larger bounds, or 

(b) finds, that for some reason not now known, some qi fails. 
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Since the latter, if true, must have some interesting number-theoretic significance, 
one can characterize this program as a no-lose situation [4]. 

2. The Behavior of G(n). Suppose the program above succeeds, and we validate 
all qi up to ql9 = 67. Then we have 

G(19) = 13,207,844,119,604.000. 

Similarly, for q24 = 89 and q29 = 109, we have 

G(24) = 714,591,416,091,369.752 and G(29) = 4,408,660,978,137,437.699. 
The obvious question is this: How does G(n) go to infinity? The somewhat 

surprising answer is: It does not. In fact, G(29) is its maximum, and then we have 

G(30) = 4,107,554,462,428,530.576, 

G(31) = 2,321,192,058,339,786.958, 

G(32) = 268,690,071,898,783.248. 

What happens next is even more surprising. There is no G(33). It disappears! 
To clarify this paradoxical behavior, let us first note something that Gunderson 

does not. Besides the root p = G(n) of 
(10) fn(p) = p-1 

there is a second, smaller root that we shall call L(n); i.e., G(n) is the greater root 
and L(n) is the lesser root. 

For example, for n = 11, we have the root 
(11) L(11) = 214.311 

besides the much larger root G(1 1) previously given in (8). 
In Table 1 below we list L(n) and G(n) to one rounded decimal place, together 

with the prime bounds P(n) for n = 4 to 32. Just as P(n) is the smallest prime 
greater than G(n), we define p(n) to be the largest prime less than L(n). We list it 
also. 

TABLE 1 
n pp(n) L (n) G (n) P (n) 

4 5 5.3 7616.1 7621 
5 7 8.5 52735.2 52747 
6 13 13.4 350357.5 350377 
7 19 22.2 2032170.2 2032171 
8 37 37.1 11360889.4 11360891 
9 61 64.1 57557706.7 57557771 

10 113 116.3 256482782.3 256482803 
11 211 214.3 1110061026.8 1110061027 
12 409 413.1 4343289919.3 4343289943 
13 821 821.0 16018986861.3 16018986869 
14 165-7 1663.0 57441749341.4 57441749347 
15 3469 3476.1 194810995856.2 194810995901 
16 7583 7587.6 611028198337.9 611028198353 
17 17299 17303.4 1779859830918.2 1779859830937 
18 40433 40446,2 5026694771491.7 5026694771491 
19 99023 99023.8 13207844119604.0 13207844119609 
20 251983 251986.4 32905961806749.9 32905961806759 
21 661273 661379.9 79066452863726.0 79066452863731 
22 1831831 1831849.7 176236114699864,1 176236114699937 
23 5324273 5324279.0 369783910563050.3 369783910563121 
24 16496587 16496599.7 714591416091369.8 714591416091389 
25 55525819 55525851.5 1242237613389766.7 1242237613389779 
26 201337207 201337223.2 1985337583473801.8 1985337583473817 
27 788516591 788516606.7 2926704423622306.3 2926704423622393 
28 3441834751 3441834803.3 3835841028759220.9 3835841028759227 
29 17069688871 17069688882.5 4408660978137437.7 4408660978137503 
30 103529269037 103529269062.9 4107554462428530.6 4107554462428531 
31 L003547805149 1003547805186.3 2321192058339787.0 2321192058339793 
32 47149278315319 47149278315328.5 268690071898783.2 268690071898799 
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For any n, the derivative 

D = dp [fn (P) -(P- ) 

is simply given by 

(12) D -1 P log(p/W ) 

if p is a root of (10). Therefore, (12) gives D both forp = L(n) andp = G(n). The 

reader may verify that D > 0 at p = L(n) and D < 0 at p = G(n) for every n in 

the table. Further, D has only one zero in between. Therefore, we have the wanted 

condition 

fn(P) > p-1 

for all primesp in the interval 

(13) p(n) < p < P(n). 

First, we return briefly to Gunderson's bound P(I 1) given in (9). The lower 

bound in (13) for n = 11 is actually p(l 1) = 211. However, that is no real problem 

since we saw that (1) above was already valid up top = 1091. Further, the interval 

in (13) for n = 11 is overlapped at its lower end by the interval (13) for smaller n. 

So Gunderson's bound P(1 1) is certainly valid. 
Next, we tabulate the derivatives D, computed from (12), for n = 11, 29, 30, 31, 

and 32. We find 

n D atp = L(n) D atp = G(n) 

11 1.1806 -0.4629 
29 0.2492 -0.1871 
30 0.1992 -0.1574 
31 0.1360 -0.1152 
32 0.0277 -0.0267 

We see that the graph y = f32(p) is nearly tangent topy = p-1, and the relative 

slopes are rapidly decreasing with n. From (12) we see that, for an n slightly larger 

than 32, and a p slightly larger than V2 e32, the two roots G(n) and L(n) would 

coalesce. So it is no longer surprising that G(33), and L(33) also, disappear, since 

f33(p) and p - 1 no longer intersect. 

3. Conclusion. We conclude by repeating the statement at the end of Section 1 

that it would be desirable to prove the validity of the generalized criteria (5) for 

q12 = 37, q13 = 41, q14 = 43, etc., as far as this is feasible to do. If this really could 

be done up to q29 = 109, we would attain the large bound 

P(29) = 4,408,660,978,137,503 

for the first case. 
But Gunderson's Theorem N stops there. To go further, one would have to 

modify Gunderson's Theorem N. We believe that that can be done but do not 

attempt it here. Alternatively, one could revert to checking (1) above for p > P(29). 
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Obviously, that would not be a very clever procedure. However, "just for fun", we 
did verify that (1) is valid for p = P(29). 
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